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Abstract 

Commonsense reasoning at scale is a critical problem for modern cognitive systems. Very large 
commonsense knowledge bases (KBs) often have thousands to millions of axioms, of which 
relatively few are relevant for answering any given query. A large number of irrelevant axioms can 
easily overwhelm resolution-based theorem provers. Therefore, methods that help the reasoner 
identify useful inference paths form an essential part of large-scale cognitive systems. In this paper, 
we describe two ordering heuristics for optimization of reasoning in such systems. First, we discuss 
how decision trees can be used to select inference steps that are more likely to succeed. Second, we 
identify a small set of problem instance features that suffice to guide searches away from intractable 
regions of the search space. We show the efficacy of these techniques via experiments on thousands 
of queries from the Cyc KB. Results show that these methods lead to an order of magnitude 
reduction in inference time. 
. 

1. Introduction

Commonsense reasoning has always been a core problem for artificial intelligence (AI) systems. 
Effective reasoning about the external world often involves drawing deductively valid conclusions 
from known facts. Unfortunately, given the combinatorial explosiveness of reasoning in expressive 
knowledge-based systems (KBS), even simple queries might get “lost” in millions of seemingly 
relevant inference paths. Efficient reasoning in such systems is critical for building large-scale 
cognitive systems. 
   Ordering heuristics play an important role in optimization of reasoning in KBS for at least two 
reasons: First, inference algorithms of KBS (e.g., backward chaining [Russell and Norvig 2003] in 
Cyc, tableaux algorithms in description logic (DL)) typically represent the search space as a graph, 
the structure of which is determined by the rules applicable to the given node in the graph. 
Generally, many rules might simultaneously apply to a given vertex, and the order of rule expansion 
can have a significant effect on efficiency [Tsarkov and Horrocks 2005]. Second, researchers have 
used first-order logic (FOL) theorem provers as tools for inference with very expressive languages 
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(e.g., OWL DL, the Semantic Web Rule Language (SWRL)) where reasoning with the complete 
language is beyond the scope of existing DL algorithms or the language does not correspond to any 
decidable fragment of FOL [Tsarkov et al. 2004, Horrocks and Voronkov 2006]. Very large FOL 
systems often have thousands to millions of axioms, of which only a few are relevant for answering 
any given query [Hoder and Voronkov 2011, Tsarkov et al. 2004]. Since hundreds of thousands of 
axioms that are irrelevant for a given query might overwhelm resolution-based theorem provers, 
the reasoner is expected to assess the utility of further expanding numerous incomplete inference 
paths. A naïve ordering of paths can lead to potentially infinite subtrees and cause unproductive 
backtracking.  
 To make inferences more efficient, this paper suggests two types of ordering heuristics. First, we 
discuss how implausible search paths are created when domain-specific axioms are used to prove 
queries involving fairly general predicates. We argue that decision trees can be used to represent 
the semantic context in which a rule is likely to contribute to a proof. We show that ordering nodes 
with the help of decision trees helps in guiding search toward the solution.  Second, a key 
impediment in the development of fast broad-application first-order reasoning systems has been an 
insufficient understanding of what makes problems difficult. We propose a comprehensive set of 
features that correlate with the answerability of nodes. We run the inference engine on a large 
number of queries, sample nodes from the resulting search graphs, and record values for their 
instance features. We use statistical regression methods to derive a model for predicting the 
answerability of nodes. We use the resulting model to order nodes during search and demonstrate 
that this improves search performance. 
 This paper is organized as follows: We start by discussing relevant previous work. Our decision 
tree algorithm and statistical regression methods are discussed next. We conclude by discussing 
our results and plans for future work. 

2.  Related Work 

Prior research has examined the use of machine learning to identify best heuristics2 for problems 
[Bridge et al. 2014] and to select a small set of axioms/lemmas that are most relevant for answering 
a set of queries [Hoder and Voronkov 2011, Sharma and Forbus 2013, Meng and Paulson 2009, 
Kaliszyk et al. 2015, Kaliszyk and Urban 2015, Alama et al. 2014]. In contrast, we focus on 
ordering heuristics that enable inference algorithms to reason with all axioms. In [Taylor et al. 
2007], the authors use reinforcement learning to guide inference, whereas in [Tsarkov and Horrocks 
2005], the authors study different types of rule-ordering heuristics (e.g., preference between ∃ and ⨆ rules) and expansion-ordering heuristics (e.g., descending order of frequency of usage of each of 
the concepts in the disjunction). This paper proposes that rule-ordering heuristics should be based 
on the search state, and we use a regression-based model to learn the effects of different features 
on the answerability of nodes. Work in other fields (e.g., database community [Chaudhuri 1998], 
SAT reasoning [Hutter et al. 2014], answer set programming [Brewka et al. 2011]) is less relevant 
because the studies do not address the complexity of deep and cyclic search graphs that arise from 
expressive first-order reasoning. To the best of our knowledge, no work in the AI community has 
used decision trees and statistical regression-based methods to control inference in large 
commonsense reasoning systems.  

                                                 
2 Examples of heuristics (or strategies) include “give priority to axioms in clause selection” and “sort symbols 

by inverse frequency”. 
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3.  Background 

 
We assume familiarity with the Cyc representation language [Lenat and Guha 1990, Matuszek et 

al. 2006, Taylor et al. 2007]. Cyc represents concepts as collections. Each collection is a kind or 
type of thing, the instances of which share a certain property, attribute or value. For example, Cat 
is a collection of all cats, and only cats. Collections are arranged hierarchically by the ‘genls’ 
relation; (genls <sub> <super>) means that anything that is an instance of <sub> is also an instance 
of <super>.  For instance, (genls Person Mammal) holds. The sentence (disjointWith <c1> <c2>) 
means that there is no instance of both <c1> and <c2>. During backward inference, a rule P(x) → 
Q(x) would be used to transform a query Q(a) into P(a). The link between Q(a) and P(a) is a type of 
transformation link. A node like s0: (and (performedBy ?x JohnMcCarthy-ComputerScientist) (isa ?x Buying)) leads to 
sub-goals like s1: (isa JohnMcCarthyBuysABook-012 Buying) and s2: (isa JohnMcCarthyWritesAPaper-087 Buying), some 
of which may be satisfiable. The links between s0 and s1 and s0 and s2 are examples of restriction 

links. Transformation and restriction links play a major role in determining the out-degree of nodes. 
Every node in the search graph is timestamped with an id. A node y is called a successor of x if 
there is a path consisting of transformation links from x to y and id(x) < id(y). A node x is a parent 
of y if a transformation link exists between x and y and id(x) < id(y). Parents(x) and Successors(x) 
denote the sets of all parents and successors of node x respectively.  Let S be the set of all nodes in 
a search graph. Then, a transformation link set p = {a(1), a(2), …,a(n)} is a set of transformation 
links that transform an initial state s0 to an intermediate state sn. Rule(a) and Substitutions(a) denote 
the rule and bindings associated with the transformation link a. Transitive inference is well 
supported in Cyc. The query (genls ?x Person) has more than 6,700 answers because the predicate ‘genls’ 
allows transitive inference in its first argument position. The aforementioned query has one open 

transitive argument position.  
   Reasoning in Cyc KB is difficult due to the sheer size of the KB and the expressiveness of the 
CycL representation language. In its default inference mode, the Cyc inference engine uses the 
following types of axioms/facts during backward inference: (i) 21,743 role inclusion axioms (e.g., 
P(x, y) → Q(x, y)), (ii) 2,601 inverse role axioms (e.g., P(x, y) → Q (y, x)), (iii) 365,593 concepts 
and 986,965 concept inclusion axioms (i.e., ‘genls’ facts), (iv) 817 transitive roles, (v) 99,238 
complex role inclusion axioms (e.g., P(x, y) ˄ Q (y, z) → R (x, z)), and (vi) 31,897 binary roles 
and 7,980 roles with arities greater than two. The KB has 21.7 million assertions and 652,037 
individuals. To control search in such a large KBS, inference algorithms often use different control 
strategies. They distinguish between a set of clauses known as the set of support3 that define the 
important facts about the problem and a set of usable axioms that are outside the set of support 
(e.g., see the OTTER theorem prover [Russell and Norvig 2003]). At every step, such theorem 
provers resolve an element of the set of support against one of the usable axioms. To perform best-
first search, a heuristic control strategy measures the “weight” of each clause in the set of support, 
picks the “best” clause, and adds to the set of support the immediate consequences of resolving it 
with the elements of the usable list [Russell and Norvig 2003]. Cyc uses a set of heuristic modules 
to identify the best clause from the set of support. A heuristic module is a tuple hi = (wi, fi), where 
fi is a function fi: S → ℝ that assesses the quality of a node, and wi is the weight of hi. The net score 
of a node s is Σiwifi(s), and the node with the highest score is selected for further expansion. In next 
two sections, we discuss two heuristic modules for focusing search. 
 

                                                 
3 For instance, the negated query is often used as the set of support. 



A.SHARMA, M. J. WITBROCK AND K.M. GOOLSBEY 

4 

4.  Decision Trees for Focused Search 

The basic idea behind this approach is best explained with a few examples. Consider the rules 
shown below4: 
(sitTypeIsSpecWithTypeRestrictionOnRolePlayer ?absorption PhotonAbsorption absorber ?type) ˄ 
(sitTypeIsSpecWithTypeRestrictionOnRolePlayer ?excitation ChemicalObjectExcitation  objectOfStateChange ?type)  

 → (cotemporalProperSubEventTypes ?absorption ?excitation)                                                                       (Rule A1) 

 

(objectFoundInLocation ?ARG1 ?ARG2) ˄ (geopoliticalSubdivision ?OTHER ?ARG2) 

 → (objectFoundInLocation ?ARG1 ?OTHER)                                                                                                    (Rule A2) 

 

(cotemporalProperSubEventTypes ?x ?y)  → (properSubEventTypes ?x ?y)                                                     (Rule A3) 

 

To answer the query (properSubEventTypes BirthdayParty ?x), an inference engine would backchain on 
rule A1 (see footnote 3) because ‘cotemporalProperSubEventTypes’ is a sub-role of ‘properSubEventTypes’ 

(Rule A3).. This transformation would lead it to the sub-goal 
(sitTypeIsSpecWithTypeRestrictionOnRolePlayer BirthdayParty PhotonAbsorption absorber ?type) and the 
inference engine would reason about photon absorption to answer a query about birthday parties5

. 

Similarly, we would backchain on rule A2 to answer the query (objectFoundInLocation ?x MesophyllCell-

001). Such search paths are unlikely to succeed.  
 General knowledge bases often have heavily used predicates with hundreds of specializations. 
These specializations partition the space into several domains. For example, while rule A1 is 
expected to be useful for naïve physics, A2 is expected to be useful when reasoning about 
geographic sites. Implausible search paths arise when a mismatch exists between the query and the 
implied context in which an axiom is likely to work. In this paper, we suggest that type/concept 
based decision trees are the right representation choice for this problem because rules are expected 
to fire for a certain class (or type) of things. Therefore, we associate restrictive information with 
the variables of axioms. Although the variables are expected to range over their entire domain, the 
restrictive information specifies a subset of the domain over which the rule has been observed to 
work. These restrictions are specified in terms of sorts or concepts. They derive from the results of 
successful uses of the given rule. A small set of successful bindings for rule 2 is shown in Table 1. 
The fact that Minneapolis, Anaheim, and Rochester are US cities helps us derive the sorted 

generalization [Page and Frisch 1992] that ?ARG2 is likely to range over the set USCity. Formally, 
a restriction condition is a pair, x:τ, where x is a variable and τ is a concept. Let Σ denote the set of 
sentences that represent relationships among the concepts. Then, a substitution θ satisfies the 
restriction condition x:τ if it maps x to a ground term t and Σ ╞  τ(t). The jth restriction condition for 
axiom a, RC(a, j), can be represented as ⋀ 𝑥(𝑖): 𝜏(𝑖)𝑥(𝑖)𝜖 𝑉𝑎𝑟𝑠(𝑎) , where Vars(a) is the set of 
variables in a. A disjunction of such constraints can be specified as ⋁ 𝑅𝐶(𝑎, 𝑖)𝑖 , and decision trees 
are a natural representation for such constraints. Our algorithm for constructing a decision tree from 

                                                 
4 A sentence of the form (sitTypeIsSpecWithTypeRestrictionOnRolePlayer SPEC SIT-TYPE ROLE TYPE) means that SPEC 

is the unique specialization of SIT-TYPE, a specialization of ‘Situation’, such that all objects that play ROLE in 
instances of SPEC are instances of TYPE. 

5 Readers might wonder about domain constraints. The first argument to 
‘sitTypeIsSpecWithTypeRestrictionOnRolePlayer’ is expected to be a specialization of ‘Situation’, and the concept 
‘BirthdayParty’ satisfies this condition. The generality of some domain constraints ensures that it is difficult 
to identify implausible sub-goals. 
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a set of successful rule bindings is shown in Figure 1. The compact decision tree (induced from 
1900 bindings) for rule 2 is simply: 
 

?ARG2:GeopoliticalEntity ˄ ?OTHER:GeographicalRegion ˄  

?ARG1: (CollectionUnionFn (TheSet TerrestrialFunctioningObject MultiPersonAgent))     

 
                                               Table 1: Partial Training Set for Rule 2 

 
 
 
 
 
 
The algorithm CreateTree (shown in Figure 1) takes as input a training set and the variables that 
occur in the rule. The training set is generated by querying the antecedent of the rule for a fixed 
duration of time. The bindings returned by the query results form the TrainingSet. Given a tuple 
from the training set (see Table 1), we compute the generalizations of the bindings.6 In step 3 of the 
algorithm, membership in the most specific maximally covering generalization is chosen as the 
branching test. When a tuple satisfies this test, we explore constraints for other variables in the 
AND branch (step 6). Otherwise, other values for the variable are considered in the OR branch 
(step 7). We stop growing the tree (step 2) when the number of unexplained training examples is 
less than a pre-determined fraction of the full training set. The complexity of top-down decision 
tree induction is O(m2.n) where m is the number of attributes, and n is the size of the training set  
[Kent and Hirschberg 1996]. To use decision trees during search we can define a heuristic module 
with the following function, fDT(s), for assessing the quality of nodes 
                 

                           ∑ ∑ 1|𝑝|  𝐼(𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠(𝑎(𝑖)), 𝑇𝑟𝑒𝑒(𝑅𝑢𝑙𝑒(𝑎(𝑖))))𝑎(𝑖)∈𝑝𝑝∈𝐿(𝑠)                                          ..(1) 
                                                                        
                                       

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                       
                                                      Figure 1: The CreateTree Algorithm 

                                                 
6 The generalization of a substitution, s, is the set Gen(s) = {c | Σ ╞ (isa s c)}. For instance, PopulatedPlace 

is a generalization of Minnesota-State.  

?OTHER ?ARG2 ?ARG1 
Minnesota-State CityOfMinneapolisMN UnivOfMinnesota 

NewYork-State CityOfRochesterNY Ginna-NuclearPowerPlant 

California-State CityOfAnaheimCA AngelStadiumOfAnaheim 

Input: TrainingSet, a set of tuples of successful bindings for the rule. 
  ListOfVars, the list of variables used in the rule. 
Output: Decision Tree for the rule. 
 
1. Create a Root node for tree. 
2. If stopping criterion has been reached, then return Root. 
3. (var, value) ← the variable and value that provide the best covering generalization 
4. AccountedSet ← Subset of TrainingSet that have var = value 
5. UnaccountedSet ← TrainingSet – AccountedSet 
6. LeftChild ← CreateTree (AccountedSet, ListOfVars – var) 
7. RightChild ← CreateTree(UnaccountedSet, ListOfVars) 
8. Add LeftChild as a new branch below Root corresponding to the test var = value. 
9. Add RightChild as a new branch below Root corresponding to the test var ≠ value. 
10. Return Root. 
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In (1), L(s) is the set of all transformation link sets from node s to the root, and I(θ, tree) is 1 when 
the substitution θ  satisfies the restriction conditions specified by the tree, and 0 otherwise. 
Moreover, Tree(r) denotes the decision tree for the rule r. This module will prioritize search paths 
that satisfy the restriction conditions. For instance, the path that uses rule A2 to answer the query 
(objectFoundInLocation ?x MesophyllCell-001) would be expanded late because MesophyllCell-001 is not 
transitively a GeographicalRegion (see the constraint for variable ?OTHER). This helps in early evaluation 
of inference steps that use rules from the domains that are pertinent for the given query. However, 
since the KB might have thousands of rules that are relevant for a query, we also need other ways 
to steer the search toward more productive states. In the next section, we propose a statistical 
approach to solving this problem.  
  

5.  Statistical Meta-Search Learning 

Is it possible to predict whether an inference engine will be able to solve an arbitrary node generated 
during search? In this section, we show how supervised machine learning methods can be used to 
build models that predict the number of answers for a problem instance. Such models can be used 
by the inference engine to decide how to allocate computational resources. Moreover, by shedding 
light on the sources of hardness in problem instances, they help in improving knowledge 
representation and fuel development of new algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: List of Features and Their Cost of Computation. Features selected by exhaustive subset selection 

are shown in bold. 

(1-8) Problem size and type features (Cheap): Number of variables, literals, fully unbound literals, single/multi 
literal query, fully/partially bound query, fully unbound single literal query. 
(9-13) Problem state features (Cheap): Depth, number of transformation and restriction links, potential fan-out 
score, number of rules used recursively in reaching the state.   
(14-18) Knowledge level features (Moderate): Generality estimate of unbound literals, min TERMS 
TermGenerality(t), number of GAFs for predicate in single literal query, min P NumGafs(p), Generality 
estimate of predicate in fully unbound single literal query.  
(19-21) Transitivity features (Moderate): Number of open transitive argument positions, Number of open 
transitive argument positions in queries with multiple variables, Number of open argument positions in ‘genls’ 
and ‘disjointWith’ literals. 
(22-29) Probing features (Expensive): Number of transformation links (mean), number of literals (mean), out 
degree of nodes (median and max), number of variables (median), | ⋃ {𝒔 |𝒔 ∈𝒑∈𝑷𝒂𝒓𝒆𝒏𝒕𝒔 (𝒏𝒐𝒅𝒆)𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒐𝒓𝒔(𝒑)} |, depth (median), Knuth’s tree size estimate. 
(30-32) Problem balance features (Cheap): Ratio of number of variables and literals, ratio of number of positive 
and negative literals, |Number of positive literals -1|.        
(33-38) Quadratic Terms (Cheap): (number of literals)2, (number of free variables)2, depth2, (number of 
transformation links)2, (ratio of number of variables and literals)2, (| ⋃ {𝒔 |𝒔 ∈𝒑∈𝑷𝒂𝒓𝒆𝒏𝒕𝒔 (𝒏𝒐𝒅𝒆)𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒐𝒓𝒔(𝒑)} |) 2.  
(39-44) Interaction Terms (Moderate): depth * (number of transformation links), 
depth*| ⋃ {𝒔 |𝒔 ∈ 𝑺𝒖𝒄𝒄𝒆𝒔𝒔𝒐𝒓𝒔(𝒑)}𝒑∈𝑷𝒂𝒓𝒆𝒏𝒕𝒔 (𝒏𝒐𝒅𝒆) |, depth * Knuth’s tree size estimate, single literal query * 
number of open transitive argument positions, min TERMS TermGenerality(t) * single literal query, generality of 
fully unbound literals *multi literal query. 
(45)Misc. (Cheap): Single literal query with procedural support. 
(46) Result feature (Cheap): Number of answers         
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To build such models, we take the following steps: (i) Identification of features: First, we identify 
key parameters that represent all known relevant features of problem instances. (ii) Data collection: 
Next, we run the inference engine on a large set of queries and sample nodes from the generated 
search graph. For each sampled node, the number of answers and a set of feature values are 
recorded. (iii) Learning: Finally, we learn a model that maps from instance features to the inference 
engine’s performance, and evaluate it on a test set of queries. After introducing some notation that 
is used in Figure 2, we discuss each of these steps in detail. Notation: Let P and TERMS denote 
the set of predicates and terms mentioned in the query respectively. For any predicate p, let 
NumGafs(p) and NumRules(p) denote the number of ground atomic formulas and number of 
relevant rules for p. Moreover, Cyc maintains an estimate of generality of any term based on its 
position in the ontology. Let TermGenerality (t) denote the generality of any term t.  
Feature Identification: Our features and their cost of computation are shown in Figure 2. Broadly, 
they can be divided into ten groups. The first group includes well-understood problem size and type 
features including number of literals and number of variables. The second group contains those 
attributes that involve examining the path that led to the node. This includes important features that 
help in maintaining the right shape of the search space. While the feature “depth” is critical in 
ensuring that the inference engine is not trapped in depth-first infinite regress, the feature “number 
of transformation links” helps us control the out-degree of nodes. Figures 3 and 4 show the trade-
off between depth-first and breadth-first search. We see that the conditional probability of success 
of a node decreases rapidly with depth. Similarly, Figure 4 shows that most of the successful 
transformation links are added in the initial phase and the utility of adding an additional 
transformation link drops rapidly. Table 2 shows the conditional probability of success of nodes as 
a function of number of literals.  
 
 
 
 
 
 
 
 
 

 

Figure 3:  Likelihood of success as a function of depth. 

 
The potential fan-out score of a node is a function of the number of rules that can potentially be 

used with it. Formally it is ΣP log10 (1+NumRules(p)). The next group includes features that encode the 
level of knowledge the KB has for predicates and terms mentioned in the query. The generality 
estimate mentioned in the third group is defined as ∏P log10 (1+TermGenerality(p)). In the fourth group, 
we include attributes for understanding the cost of transitive queries. The probing feature is a 
special kind of feature that examines the neighborhood of the node to assess its quality. Since 
locally available information at a node is insufficient for gauging the complexity of the search space 
below it, in the fifth group, we include features that pick a random path originating at the given 
node and record descriptive statistics of various properties of interest (e.g., number of literals, out-
degree of nodes). For example, the third feature of the fifth group is computed by finding the median 
out degree of nodes encountered in the randomly selected path. The sixth group captures the balance 
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of the node in two ways: we measure the ratio of number of variables and literals, and the ratio of 
number of positive and negative literals. Because we expect disjunctive queries to be more difficult, 
we also note whether non-Horn axioms were used in deriving the state. In the seventh and eighth 
group, we included quadratic and interaction terms for some salient features.  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4:  The x-axis shows the index range of transformation links, and the y-axis shows the number of 
successful transformation links in the given range. 

 

Table 2: Conditional Probability of success as a function of number of literals 

 

Number of literals (n) Prob (success | n) 

             1        0.940 

             2        0.009 

             3         0.001 

             4        0.003 

             5        0.003 

             6        0.003 

 
 Data Collection: The Cyc KB contains thousands of stored queries of various level of difficulty. 
We gathered a large amount of data by sampling and running these queries. Forty percent of the 
nodes from the resulting space were sampled, and the values of the 46 features shown in Figure 2 
were recorded. This produced 2.5 million data points. 
 Data Transformation and Learning: Recall that the number of answers is the performance 
measure, and all other features shown in Figure 2 are predictor features. We performed z-score 
normalization of the predictor variables by subtracting the mean and dividing the difference by 
their standard deviation7. Given the extreme variability in the number of answers, we use a log-
transformation on the result feature (i.e., we predict log10(1+ number of answers)). In our initial 
unpublished work, we experimented with classification techniques (e.g., naïve Bayes, logistic 
regression) to predict the likelihood of success of a node. Since the results were not very 
encouraging, we switched to multiple linear regression. In linear regression, the aim is to learn a 

                                                 
7 Missing feature values are ignored during normalization, and then set to zero during training. This ensures 

that they are minimally informative because they are equal to the mean of the distribution [Hutter et al. 
2014]. 
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function of the form fSL(s) = Σ wigi (s), where wi is the weight for the ith feature of node s, gi(s).  The 
function fSL(s) can then be used by a heuristic module to assess the quality of nodes. The values of 
wi are determined by minimizing the metric root mean squared error (RMSE). The R software was 
used to estimate the values of wi [R Core Team 2015]. We used the repeated random sub-sampling 

approach and 10-fold cross validation to validate our model. While using the former method, 90% 
of the data was selected at random for training and the rest were used as the test set. This process 
was repeated 50 times. The mean RMSE from the two validation methods was 0.47 and 0.76 
respectively. Multiple R2 and adjusted R2 for this model were equal to 0.76, and the F-statistic was 
1.8*105.  
 For a variety of reasons, the features can be uninformative, correlated or redundant. Therefore, 
we use feature selection methods to identify a small set of features that explains the variance in data 
as well as the full set of features8.  Such analysis helps us to identify properties of nodes that strongly 
affect empirical performance. The set of best 10 features as identified by an exhaustive subset 
selection method is shown in bold in Figure 2. The R2 value of subset models with these 10 features 
converged to that of models with all inputs. The presence of features such as “Knuth’s tree size 
estimate” [Knuth 1975], “ratio of number of positive and negative literals” and “(number of 
transformation links)2” in the selected list suggests the following: (i) Locally available information 
is insufficient for predicting the complexity of search space, and probing features play an important 
role in guiding a search. (ii) ensuring that the search graph has the right shape is of critical 
importance, and reasoners need to find the balance between “depth-first” and “breadth-first” search; 
(iii) negated literals and disjunctive queries are more difficult to answer. In the next section, we 
evaluate how these heuristics help the inference engine in answering queries. 
  
6 Experimental Results 
 

The selection of benchmark instances for testing the efficacy of heuristics is an important factor in 
any empirical analysis. Our selection of problem instances was guided by three principles: (i) The 
benchmark set should consist of queries that are intrinsically difficult to solve for the inference 
engine. Therefore, we excluded simple queries that can be answered without any backchaining in 
a few milliseconds (e.g., (isa MarvinMinsky Person), (genls Dog Carnivore)). We focused on 
queries that needed several transformations (i.e., depth of rule back-chaining) to be answered. (ii) 
Heuristics should be tested on the hardest benchmark problems. Since the size of search space 
increases with the size of KB and the number of axioms in it, we should test the efficacy of our 
algorithms on problems from the largest KBs. In this paper, we have used the Cyc KB for testing 
our methods because it is the largest commonsense KB that could be used for deductive question 
answering (Q/A)9. (iii) While artificially crafted and randomly generated problem instances are 
very useful for understanding how syntactic properties affect the behavior of algorithms, the right 
methodology for generating such instances has not received much attention in the commonsense 
reasoning community. Therefore, this work focused on problems from real-world applications.  The 
Cyc KB has thousands of queries that have been created by knowledge engineers and programmers 

                                                 
8 We have experimented with forward, backward and exhaustive subset selection methods. All three methods 

lead to very similar set of selected features.  
9 For instance, in the TPTP problem set, Cyc problems are 1-3 order(s) of magnitude larger than SUMO or 

Mizar problems (see Table 1 in [Hoder and Voronkov 2011]). KBs like ConceptNet do not contain axioms 
for deductive Q/A. 
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for various projects (e.g., Project HALO [Friedland et al. 2004], HPKB project [Cohen et al. 1998]) 
and for testing the question-answering capability of the system. These queries are of varying levels 
of difficulty: some of them need just one transformation, others required the inference engine to 
back-chain on heavily used predicates that can lead to huge fan-out and high search cost. We 
ensured that queries of both types were well represented in our test sets10. Based on the terms 
mentioned in them, the queries were divided into three test sets: (i) Test Set 1: Military and 
asymmetrical warfare domain, (ii) Test Set 2: Biology domain, and (iii) Test Set 3: Others (e.g., 
commonsense queries). The English translation of a query from test set 2 is shown below: 
What causes the decline in MPF activity in M Phase? 

 

The question shown above would lead to the query11 (causes-SitTypeSitType ?cause 

MPFActivityDroppingInMPhase).   
Table 3: Experimental Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recall that the inference engine uses a set of heuristics for ordering nodes during search, and the 
net score of a node can be written as f(s) = w0+ w1.fDT(s)+ w2.fSL(s). Here, fDT(s)and fSL(s) refer to 
the scores returned by decision tree and statistical learning models discussed above. The first term, 
w0, is the score returned by heuristics not discussed in this paper. In Table 3, the “baseline” version 
is obtained by setting both w1 and w2 to zero. The baseline version (i.e., w0) is the contribution of 
all heuristics that have been developed over the last 31 years and were in daily use in early 2015 
[Lenat and Guha 1990, Taylor et al. 2007].  By setting w2 to 0, we can assess the efficacy of decision 

                                                 
10 The difficulty level of these queries can be gauged by looking at the average time requirements of the 

“baseline” version in Table 3. Initially some of the queries in our test set could not be answered in 20 
minutes. 

11 (causes-SitTypeSitType c e) means that each instance of c is normally a cause of an instance of a situation 
type e. 

Test Set Method 
No. of 

Queries % Answered 
Q/A Imp.(%) 

 Time (hours) Speedup 

1 Baseline 307 48 
- 

13.7 - 
 DT 307 57 

19 
11.7 1.17 

 SL 307 85 
77 

 4.3 3.18 
 DT+SL 307 99 

100 
 0.8 16.61 

2 Baseline 1705 64 
- 

55.0 - 
 DT 1705 94 

46 
7.6 7.20 

 SL 1705 94 
46 

8.8 6.24 
 DT+SL 1705 96 

50 
4.0 13.50 

3 Baseline 1736 26 
- 

100.8 - 
 DT 1736 81 

211 
22.6 4.45 

 SL 1736 86 
230 

17.5 5.76 
 DT+SL 1736 92 

253 
6.8 14.69 
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tree heuristics (rows labeled “DT” in Table 3). Similarly, we can study the utility of statistical 
learning models by setting w1 to 0 (rows labeled “SL” in Table 3). The net contribution of both 
methods is shown in rows labeled “DT+SL.” The experimental data was collected on a 4-core 3.40 
GHz Intel processor with 32 GB of RAM. We used 18,383 decision trees, and ten best features 
identified by subset selection in these experiments.  Due to the large time requirements of these 
queries, we restricted the cutoff time of each query to 5 minutes.  Table 3 contains the results for 
three test sets. We see that both decision trees and multiple regression based models have led to 
significant speedups. The average speedup is a factor of 14. Since these heuristics steer the 
inference engine towards more productive parts of the search space, they improve question-
answering (Q/A) performance too. The fifth column in Table 3 (labeled “Q/A Imp. (%)”) shows 
the improvement in Q/A performance with respect to the baseline.  
        
7 Conclusion 
 

Deep deductive reasoning over large commonsense knowledge bases is critical for modern AI 
systems. The intractability of first-order logic has presented interesting research opportunities for 
understanding the causes of problem hardness and developing new algorithms for surmounting 
them. In this article, we have described two techniques to make reasoning more efficient. The first 
uses decision trees to guide the search toward germane rules by representing the semantic context 
in which a rule is expected to produce results. The second uses statistical regression techniques to 
provide an estimate of the number of answers a node is expected to provide based on search meta-

features. The inference engine uses these heuristics to order nodes during search. Experimental 
results over thousands of queries show an order of magnitude speedup.  These results suggest 
several lines of future work. First, we need to test these heuristics over even larger set of queries to 
understand their dynamics. Second, we want to extend our decision tree implementation to make 
probabilistic assessments. Next, we would like to experiment with other statistical models (e.g., 
regression splines, random forests) to improve the model quality. Finally, we believe that coupling 
this approach with a decision-theoretic model [Smith 1989, Greiner 1991] could yield a more 
complete theoretical model for making reasoning more efficient. 
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