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Abstract

Bayesian networks are causal/probabilistic models that are signifi-
cantly more transparent than other “black box” ML solutions. However,
these graphs are also extremely limited: they can only express a single
type of relation between nodes, and the nodes themselves are inflexible.
CycL, on the other hand, permits richer comparison between entities. Cyc
is also designed to scale and generate causal (and other kinds of) reasoning
in the face of uncertainty. Bayesian networks are fantastic tools for lim-
ited models with certain assumptions, but one should not mistake these
networks as a transparent solution for ML’s black box problem.

1 Bayesian Networks: Brief Overview and Ad-
vantages

Bayesian networks are node and link graphs; they encode causal/correlative
data in an acyclic graph where each node in that graph corresponds to an event
or true statement, and each link indicates the strength or probability that one
can/should/will “follow” that link while reasoning.

Given (i) some values at the root or roots of the graph and (ii) a method
of computing the probability of each node given the probabilities of its parent
nodes, it is then possible to follow that method iteratively and compute the
probability of any node in the graph.

The resulting graph can be inspected and processed so as to provide a kind
of explanation for each conclusion that it draws. Suppose, for example, that
there is a Bayesian graph having a link that connects a node labelled “It is
raining” to a node labelled “The ground is wet”, and another link from that
node to one labelled “The ground is slippery”. Then when that graph is used to
infer that the ground is slippery from the claim that it is raining, one can “read
off” the step by step path that leads from the givens (the roots — in this case
the node labelled “It is raining”) to the final conclusion and — to the extent that
the inference method (ii, above) is natural and obvious and valid — that path
will be seen as natural and clear and valid to a human examining the path.



The inference in the last paragraph could be generated using a very small
amount of data. It could even be the case that experts were used to enter the
nodes in the graph and their connections. This is in contrast to machine learn-
ing approaches that offer no explanation for the conclusions they generate and
make it particularly difficult for experts to enter any sort of data to manipulate
the inferential path that has been taken. In this sense, Bayesian networks are
clearly a step on the right path towards artificial intelligence that would be fully
transparent and editable while also only requiring a relatively small amount of
data (or even no data) to work.

2 A Deeper Analysis of Bayesian Networks

To be a little more precise than we were above, a Bayesian network is a graphical
representation of probability distributions. There are three components:

Nodes: Each node in a Bayesian network graph represents a proposition that
fixes the value of some variable. For example: (Smoker = True) or (Age
= 32) or (Distribution of balls in urn = 3 blue, 2 red, 5 yellow).

Directed Edges: Nodes are connected to other nodes by arrows; these models
are often called DAGs for “Directed Acyclic Graph.” Arrows typically
represent causality. So, if A is a (partial) cause of B, one can make nodes
for A and B and connect them: A B.

Probabilities: These causal or correlation edges need not be guaranteed causes.
Smoking is a cause of cancer, but not all smokers get cancer. Bayesian
networks allow us to insert the conditional probability, such as P(Cancer
— Smoking) = .7, “the probability of cancer on the condition that one
smokes is 70%.”

What makes these graphs Bayesian is their application of Bayes’ Theorem,
among other probability equations. Bayes’ Theorem states that P(A—B) =
P(A)*P(B—A)/P(B), as long as P(B) is nonzero. Once such a graph is com-
pleted, updating the status of a single node will ripple forward and backward
through the arrows and generate posterior probabilities for each node.

Links between graph nodes generally represent one sort of inferential link:
causes, or caused by, or co-occurs with, or correlates with, etc. Or else the
graph takes the risk of mixing together several different meanings for a link,
which makes the conclusion difficult to understand and difficult to trust. A
combinatorial explosion happens if one tries to scale up these types of graphs
to include large numbers of nodes that have a wide variety of possible values.
Thus, links in a Bayesian network are often interpreted as causal. To a hammer,
everything looks like a nail; to a Bayesian network, everything looks like a causal
structure. For sprinklers and wet streets, this is entirely appropriate. But a link
between “a person has a male sibling” to “a person has a brother” is definitional,
not causal. Moreover, a Bayesian network link often just means “there is some



third factor at work here which happens to often cause A and B” —consider the
link between “a woman is in a hospital” and “a woman has a newborn infant.”
If you discover that a woman is in the hospital, and nothing else, then your
confidence that she has a newborn infant should increase. But it would be a
mistake to think that the woman’s being in the hospital might cause her to have
a newborn baby, nor should one infer that possessing the baby caused her to be
in the hospital. Instead, we know that there is a common cause for both: giving
birth.

Since not every bit of reasoning involves causation, one might try interpreting
some arrows as meaning something other than ‘causes’. In the case of the link
between brother and male sibling (everyone who has a male sibling has a brother,
and so the P(brother—male sibling) = 1), the link is a semantic or definitional
one. The problem is that so far as the reasoning method (ii, above) is concerned,
there is only ever one type of link in a given Bayesian network graph.

Consider the following example: A company wants to model what users they
expect will enjoy which products they sell. One explanation for why a user may
like a product is that they have a friend who has also bought that product. In
this case, we can set up a Bayesian network with a link from a person having a
friend who owns a product to a person being likely to enjoy that product. Now
someone may want to know why that link is in the graph. In this case, it is
ambiguous, the link could be causal: friends tend to tell their friends what they
enjoy. The link might also be due to a less causal path, friends tend to have
similar interests, and people are interested in things they enjoy. Since there
are no graphs with different types of links, the simple graph we just built is
impoverished in the explanations it can generate. We could distinguish what
sort of link we intended to set up by using the more complicated graph with six
nodes that looks something like this:

A and B are friends B bought product C

A and B have similar interests B enjoys product C

B is interested in C

A is interested in C



This graph may offer some explanation of the relationship between A and
B being friends, B buying product C, and A being interested in C, but there
is no uniform interpretation of what a link means. For the top right link from
‘B bought product C’ to ‘B enjoys product C’ there is probably a causal in-
terpretation of that link from bottom to top. B enjoying a product may cause
them to buy it. A causal explanation will not work for either of the bottom two
links though. A being interested in C and having similar interests to C does not
cause B to be interested in C. Instead those links from bottom to top encode
something about what the words ‘similar interest’ mean. Those links are better
characterized as semantic links between nodes. A good and clear explanation of
why A would be interested in product C should include all of these links along
with information about what kind of link it is. (Spoiler: Cyc is able to express
as many types of relations as anyone would like, and in fact already has tens of
thousands of types of relations with fully fleshed-out semantics.)

Bayesian networks perform well on small graphs where nodes have a rela-
tively small number of possible values. Importantly, for each link in a graph, the
probability of that link given its parent links needs to be calculated. The num-
ber of conditional probabilities that need to be counted is exponential given the
number of parents that a node has. In the above graph, all of the nodes could
take only two values. The node ‘A is interested in C’ has 5 parents. Therefore,
in order to calculate the conditional probability table for that node, we would
need to make 25 calculations. That’s for a graph with only six nodes and only
binary values to be assigned to that node. Considering a more scaled-up situa-
tion where a company might want to track its customers’ purchase history, its
products, and its customers’ friends, the values for these nodes would be much
greater than 2. Suppose that the company has 200 customers and 300 products,
and each customer could be friends with 100 people. Suppose we care about
a node with only two parents that takes friends as values but relies on a node
that takes customers as a parent, which takes products as its parent: in this
case, the number of entries in that node’s conditional probability table would be
100200*300. That number is astronomical, and we have only considered three
nodes with a very small number of values for each node. A company that only
had 200 customers does not need Bayesian networks to figure out what its cus-
tomers enjoy, and already they would be stalling out. Although there are ways
to prevent this exponential growth, none of them would apply to the graph that
concludes with ‘A is interested in C’. And if we want those nodes to take more
values than True and False, then things spiral quickly.

Bayesian networks are more transparent than a purely statistical ML black
box — e.g., a multi-layer neural network. Neural nets use complex math to
churn out predictive correlations, but they require big data, and their methods
are opaque. In the end, if a neural net gives some output like “buy this stock”,
the justification will just be: “because complex mathematics says so”. This
is not trustable, and it certainly is not compelling to the SEC. On the other
hand, a Bayesian network will justify a conclusion like “stock X will increase
with .9 certainty” with something like: “we have built a causal model of the
world, which has that value as the output”. This is better, since you can at least



partially examine this causal model: we can look at the nodes and see tables
that express the conditional probabilities that tell us how tightly (causally)
connected these variables are. But there are some noteworthy absences:

2.1 We will not always know how the structure was determined. If it was
statistically derived, the structure itself may be as much of a black box as
a neural net.

2.2 We will not always know how the conditional probabilities were determined.
Again, if ML was used to generate these conditional probabilities, it may
be opaque to users.

2.3 These explanations still bottom out in being able to understand a graphical
model.

2.4 All of this leads to affirmative conclusions; plausible arguments against Q
being true are not generally computable, and hence not capable of being
“read off” and articulated.

A satisfying explanation should make clear the reasons that support a conclusion
or argue against it. In summary, then, Bayesian networks are powerful tools
for modeling clearly defined causal structures, but they face issues in terms of
scalability, transparency, and pro/con argumentation.

3 Cyc

In order for AT to really work and be useful it needs to be expressive, have
auditable and clear explanations of its conclusions, and be able to scale well
beyond small problem-spaces. It needs to generate answers to questions when
there is a lot of data available and offer clear reasons for — and perhaps against
— the answers that it is giving. When it makes a mistake, users of the Al need
to be able to examine exactly why it made a mistake and then correct that
mistake. Machine learning is inadequate for the latter reasons, and Bayesian
networks are inadequate for the former ones.

Cyc produces a series of reasons for every answer it generates. Each answer
is readily accessible to humans and can be stored for later reuse. The rules
that Cyc uses are completely public; there is nothing hidden. Furthermore, its
rules apply across a wide variety of domains and for a wide variety of reasons.
Cyc’s rules can encode mathematical knowledge, causal knowledge, semantic
knowledge, knowledge about gardening and royalty — any kind of knowledge
you can imagine. Cyc’s expressiveness when it comes to the reasons it uses is as
expressive as any natural language. For example, if you ask Cyc “Do fatigued
lifeguards have trouble doing their job?”, Cyc answers that this is true. But it
also provides an explanation for why it’s true. Cyc offers the following two facts
in support:

3.1 Lifeguards have to be able to perform athletic activities for their jobs.



3.2 Fatigued people have trouble performing athletic activities.

If Cyc comes to any conclusions that look false, it can offer arguments like the
above one for why it believes what it does. This makes it easy to understand
why Cyc says what it says and to see exactly where it has gone wrong.

Note that the first reason in our lifeguard argument is not causal. It’s some-
thing about what lifeguards need to be able to do. Cyc can offer a justification
of that belief accordingly. Cyc knows that lifeguards have to be able to perform
athletic activities because it also knows:

3.1a. Lifeguards have to be able to swim for their jobs.

3.1b. Swimming is an athletic activity.

This explanation has nothing to do with causation, and Cyc is clear about that.

All of Cyc’s knowledge is fully explicit, declarative, and reusable. E.g., if
you ask Cyc “Do you have to be able to move in order to swim?”, it will answer
“yes” because it knows that swimming is an athletic activity and in order for
an agent to perform athletic activities they have to be able to move. This
means that instead of having to write a new graph and calculate new conditional
probabilities for something that a Bayesian network has never encountered, Cyc
can draw on its vast knowledge base to answer a question.

Cyc’s expansive knowledge base is proof that it is scalable. It knows 25,000,000
principles and rules of thumb that it can leverage at any time to generate an-
swers to questions like the one above. Even the number of one-step inferences
Cyc can draw is in the trillions, and it is not uncommon for Cyc to produce
explanation graphs that have a small number of thousands of inference steps in
them!!

Cyc uses several types of meta-knowledge to enable it to quickly find the
assertions and rules from its knowledge base that are relevant to the current
problem. It also uses meta-knowledge to plan out how it should try to use those
assertions and rules to find an answer. Given an answer, it can look back at the
successful path to that answer in order to provide a step by step justification
for that answer.

Any application that has access to Cyc can make use of the vast knowledge
that Cyc has. That includes common sense knowledge (such as time and space
and causality), intermediate level theories (of weather, traffic, emotions, etc.),
and — when applicable — domain-specific knowledge. This domain knowledge
can include non-proprietary assertions and rules added during the course of
building the hundreds of previous Cyc applications — e.g., Ohm’s Law, typical
sizes of aortic tears, and the ICD-10 code for diabetes.

Moreover, Cyc can interface with external sources and in effect do a sort of
virtual data integration or data-laking: it can reason as though the knowledge

LCyc is optimized to quickly identify and use just the 0.001% of its knowledge — just the
knowledge that’s appropriate — when answering a specific question, but 0.001% of 25 million
is 2,500, which is why a typical Cyc application query involves a couple thousand inference
steps.



in those disparate knowledge sources were part of the Cyc knowledge base. Cyc
accomplishes this by running out to access those databases and web services just
as a human performing that task would. To make this happen, we translate the
meanings of the external content into existing Cyc vocabulary. Because CycL
is so expressive, it has the power to represent any information that might be in
the external source.?

This means that Cyc can — and typically does — operate not by itself but
synergistically. We partner with machine learning systems, Bayesian networks,
and ontology-based solutions that use less expressive representations such as
knowledge graphs and triple-stores. This allows us to maintain the expressivity
of Cyc without losing the speed or advantages of these other formats in their
respective niches.

4 Conclusion

Bayesian networks can be an asset in your Al toolkit, but they do have some
limitations. On the one hand, they can provide powerful probabilistic inferences,
revealing or unpacking causal structures to generate posterior probabilities for
related events. On the other hand, these models are inflexible, not scalable, and
relatively opaque. They can only express things in triples, being a node and
link structure. Moreover, every one of these links must have the same meaning,
and that meaning is usually restricted to ‘causes’ or ‘raises the probability of’;
more nuance is left to other more expressive languages. On the scaling front, the
number of computations required even for very small models is quite large. At
enterprise scale, Bayesian models of this sort for inference are untenable, even
when given vast resources. Lastly, the transparency will boil down to a series of
calculations carrying out Bayes’ theorem. To be sure, this is more meaningful
than a deep learning black box, but it falls far short of a reasoned argument.
As another tool in your AI toolkit, Cyc can help overcome some of the lim-
itations of Bayesian networks, which are useful for probabilistic modelling but
do not themselves constitute an overall Al solution. Cyc provides transparent
logical reasoning across domains. To facilitate this reasoning, Cyc has an un-
derlying representation language as expressive as any natural language (such as
English): you are not restricted to only causal relationships. And with over 35
years of experience developing a variety of applications that leverage the same
(ever-growing) knowledge base, Cycorp has a demonstrably scalable solution.

2For the same reason, Cyc has never failed to be able to fully capture a definition, equation,
rule, or rule of thumb that a domain expert was able to articulate and communicate in English.



